Авторизация

Сверхпроводимость

 

Сверхпроводимость — вещь странная и, в некоторой мере, даже противоречащая здравому смыслу. Когда электрический ток течет по обычному проводу, то, в результате наличия у провода электрического сопротивления, ток совершает некую работу, направленную на преодоление этого сопротивления со стороны атомов, в результате чего выделяется тепло. При этом каждое соударение электрона — носителя тока — с атомом тормозит электрон, а сам атом-тормоз при этом разогревается — вот почему спираль электрической плитки становится такой красной и горячей. Всё дело в том, что спираль обладает электрическим сопротивлением, и, вследствие этого, при протекании по ней электрического тока, выделяет тепловую энергию.

 

В 1911 году нидерландский физик-экспериментатор Хейке Камерлинг Оннес (Heike Kammerlingh Onnes, 1853–1926) сделал удивительное открытие. Погрузив провод в жидкий гелий, температура которого составляла не более 4° выше абсолютного нуля (который, напомним, составляет –273°С по шкале Цельсия или –460°F по шкале Фаренгейта), он выяснил, что при сверхнизких температурах электрическое сопротивление падает практически до нуля. Почему такое происходит, он, собственно, не мог даже и догадываться, но факт оказался налицо. При сверхнизких температурах электроны практически не испытывали сопротивления со стороны атомов кристаллической решетки металла и обеспечивали сверхпроводимость.

 

 

Но почему всё так происходит? Это оставалось тайной вплоть до 1957 года, когда еще три физика-экспериментатора — Джон Бардин (John Bardeen, 1908–1991), Леон Купер (Leon Cooper, р. 1930) и Джон Роберт Шриффер (John Robert Schrieffer, р. 1931) придумали объяснение этому эффекту. Теория сверхпроводимости теперь так и называется в их честь «теорией БКШ» — по первым буквам фамилий этих физиков.

 

А суть ее заключается в том, что при сверхнизких температурах тяжелые атомы металлов практически не колеблются в силу их низкого теплового движения, и их можно считать фактически стационарными. Поскольку любой металл только потому и обладает присущими металлу электропроводящими свойствами, что отпускает электроны внешнего слоя в «свободное плавание» (см. Химические связи), мы имеем, что имеем: ионизированные, положительно заряженные ядра кристаллической решетки и отрицательно заряженные электроны, свободно «плавающие» между ними.

И вот проводник попадает под действие разности электрических потенциалов. Электроны — волей или неволей — движутся, будучи свободными, между положительно заряженными ядрами. Всякий раз, однако, они вяло взаимодействуют с ядрами (и между собой), но тут же «убегают». Однако, в то самое время, пока электроны «проскакивают» между двумя положительно заряженными ядрами, они как бы «отвлекают» их на себя.

 

 

В результате, после того как между двумя ядрами «проскочил» электрон, они на недолгое время сближаются. Затем два ядра, конечно же, плавно расходятся, но дело сделано — возник положительный потенциал, и к нему притягиваются всё новые отрицательно заряженные электроны. Тут самое важное — понять: благодаря тому, что один электрон «проскакивает» между атомами, он, тем самым, создает благоприятные энергетические условия для продвижения еще одного электрона. В результате электроны перемещаются внутри атомно-кристаллической структуры парами — по-другому они просто не могут, поскольку это им энергетически не выгодно. Чтобы лучше понять этот эффект можно привлечь аналогию из мира спорта. Велосипедисты на треке нередко используют тактику «драфтинга» (а именно, «висят на хвосте» у соперника) и, тем самым, снижают сопротивление воздуха. То же самое делают и электроны, образуя куперовские пары.

 

Тут важно понять, что при сверхнизких температурах все электроны образуют куперовские пары. Теперь представьте себе, что каждая такая пара представляет собой связку наподобие вермишели, на каждом конце которой находится заряд-электрон. Теперь представьте себе, что перед вами целая миска подобной «вермишели»: она вся состоит из переплетенных между собой куперовских пар. Иными словами, электроны в сверхпроводящем металле попарно взаимодействуют между собой, и на это уходит вся их энергия. Соответственно, у электронов просто не остается энергии на взаимодействие с ядрами атомов кристаллической решетки. В итоге доходит до того, что электроны замедляются настолько, что им больше нечего терять (энергетически), а окружающие их ядра «остывают» настолько, что они более не способны «тормозить» свободные электроны. В результате электроны начинают перемещаться между атомами металла, практически не теряя энергии в результате соударения с атомами, и электрическое сопротивление сверхпроводника устремляется к нулю. За открытие и объяснение эффекта сверхпроводимости Бардин, Купер и Шриффер в 1972 году получили Нобелевскую премию.

 

 

С тех пор прошло немало лет, и сверхпроводимость из разряда явлений уникальных и лабораторно-курьезных превратилась в общепризнанный факт и источник многомиллиардных доходов предприятий электронной индустрии. А дело всё в том, что любой электрический ток возбуждает вокруг себя магнитное поле (см. Закон электромагнитной индукции Фарадея). Поскольку сверхпроводники долгое время проводят ток практически без потерь, если поддерживать их при сверхнизких температурах, они представляют собой идеальный материал для изготовления электромагнитов. И, если вы когда-нибудь подвергались медико-диагностической процедуре, которая называется электронная томография и проводится на сканере, использующем принцип ядерно-магнитного резонанса (ЯМР), то вы, сами того, возможно, не подозревая, находились в считанных сантиметрах от сверхпроводящих электромагнитов. Именно они создают поле, позволяющее врачам получать высокоточные образы тканей человеческого тела в разрезе без необходимости прибегать к скальпелю.

 

Современные сверхпроводники сохраняют свои уникальные свойства при нагревании вплоть до температур порядка 20K (двадцать градусов выше абсолютного нуля). Долгое время это считалось температурным пределом сверхпроводимости. Однако в 1986 году сотрудники швейцарской лаборатории компьютерной фирмы IBM Георг Беднорц (Georg Bednorz, р. 1950) и Александр Мюллер (Alexander Müller, р. 1927) открыли сплав, сверхпроводящие свойства которого сохраняются и при 30K. Сегодня же науке известны материалы, остающиеся сверхпроводниками даже при 160К (то есть чуть ниже –100°C). При этом общепринятой теории, которая объясняла бы этот класс высокотемпературной сверхпроводимости, до сих пор не создано, но совершенно ясно, что в рамках теории БКШ ее объяснить невозможно. Практического применения высокотемпературные сверхпроводники на сегодняшний день не находят по причине их крайней дороговизны и хрупкости, однако разработки в этом направлении продолжаются.

 

 

Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобий-олова широкое применение находит так называемая бронзовая технология.

 

Развитие сверхпроводниковой техники связано также с созданием ожижителей и рефрижераторов с все большей хладопроизводительностью на уровне температур жидкого гелия. Эволюция температуры сверхпроводящего перехода привела к возможности использования хладагентов с все более высокой температурой кипения (жидкий гелий, водород, неон, азот).

 

Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. Уже в 80-х гг. прошлого века в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.

 

Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей довольно сложно, так как требование исключительно высокой однородности магнитного поля вызывает необходимость точного соблюдения заданных размеров.

 

 

В последние годы явление сверхпроводимости все более широко используется при разработке турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др. Следует также отметить такое направление в работах по сверхпроводимости как создание устройств для измерения температур, расходов, уровней, давлений и т.д.

 

В настоящий момент имеются два главных направления в области применения сверхпроводимости: прежде всего – в магнитных системах различного назначения и затем – в электрических машинах (в первую очередь, в турбогенераторах).

Ученые из Сколтеха продемонстрировали высокотемпературную сверхпроводимость для гидридов актиния и обнаружили общий принцип, по которому можно вычислить их сверхпроводимость, используя лишь таблицу Менделеева.

 

 

Группа химиков под руководством профессора Сколтеха и МФТИ Артема Оганова обнаружила закономерность в распределении в таблице Менделеева элементов, способных к образованию сверхпроводимых соединений. Оказалось, что высокотемпературная сверхпроводимость возникает у веществ, в состав которых входят атомы металлов, которые близки к заселению новой электронной подоболочки. В этом случае атом в кристалле очень чувствителен к положению окружающих атомов, а это создает сильное электрон-фононное взаимодействие — тот самый эффект, который лежит в основе традиционной сверхпроводимости. Основываясь на такой гипотезе, ученые предположили высокотемпературную сверхпроводимость для гидридов актиния. Проверка подтвердила гипотезу: для AcH16 сверхпроводимость предсказана при температурах вплоть до минус 69-22 оС при давлении в 1,5 миллиона атмосфер. 

 

«Сама идея связи сверхпроводимости с таблицей Менделеева принадлежит студенту моей сколтеховской лаборатории — Дмитрию Семенку. Найденный им принцип настолько простой, что удивительно, как никто не заметил его раньше», — рассказывает Артем Оганов.

 

Источники:

https://elementy.ru/trefil/21064/Teoriya_sverkhprovodimosti

https://ido.tsu.ru/schools/physmat/data/res/SPF/uchpos/text/5_6.html

https://naked-science.ru/article/column/naydena-svyaz-sverhprovodimosti-s 

  • Нравится
  • 0
Оставить комментарий
иконка
Посетители, находящиеся в группе Гость, не могут оставлять комментарии к данной публикации.
  • Читаемое
  • Сегодня
  • Комментируют


Облако тегов
Опрос
Календарь
«    Апрель 2018    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
30